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Abstract—The variational statement, governing equations and corresponding Ritz approximations
are derived in Cartesian, cylindrical and spherical coordinates for the evaluation of the natural
frequencies of free vibrations of elastic cylinders and spheres. The formulation can account for
orthotropic material symmetry, and can be applied to either solid or hollow geometries. The
approximating functions selected for the displacement components depend on the geometry and
coordinate system used to describe the problem. and are a combination of power series, Fourier
series and spherical harmonics. Representative examples are given in the various coordinate systems
for both the cylinder and the sphere. In general. excellent agreement is found with results obtained
by other methods.

|. INTRODUCTION

The study of free vibrations of homogencous elastic bodies has been an important arca of
solid mechanics for well over a century. Initial studies of the vibrations of spheres were
applicd to analyse the oscillations of the carth. Knowledge of vibrations in cylinders can
be applicd to problems in bcam and shell dynamics and the use of solid cylinders as
underwater transducers or ultrastable microwave oscillators. Similar needs exist for single
crystals for applications such as piczoelectric transducers and acoustic resonators.

On a much smaller scale, theories of vibration for many geometries can be used in the
determination of clastic constants, which represent some of the most basic and useful
propertics of solid continua. This type of approach is particularly applicable to many
advanced materials such as oxide superconductors, ceramics and composites. Not only are
the materials often available only in these special shapes, but many traditional methods for
evaluating the elastic constants are intractable for these solids. So-called solid resonance
mcthods require techniques for accurately evaluating the natural frequencies of free
vibration for solids of various shapes and constitutive laws.

The purpose of this work is to extend previous solutions to the three-dimensional
equations of elasticity for the evaluation of free vibration frequencies using the Ritz method.
Earlier works have focussed on homogeneous isotropic solids with the elastic constants and
geometry defined in terms of rectangular Cartesian coordinates. The current approach
generalizes this approach and allows for the additional consideration of a wide variety of
new problems.

2. BACKGROUND

In the development of the theory of clasticity, the physics of small vibrations in elastic
solids was of prominent importance. This was particularly true for solids of regular shape
such as cylinders, spheres and parallelepipeds. Kelvin (1863) was the first to analyse this
problem to study the rigidity of the earth. Later formulations for this class of problem
were given by Lamb (1882), who formulated the problem in rectangular coordinates, and
Chree (1889), who considered the same problem using spherical coordinates. In these cases,
the sphere was assumed to be homogencous and isotropic.

Numerous studies were subsequently completed for this type of problem because of
intense interest in the oscillations of the earth [see, for example. Lapwood and Usami
(1961). Ness et al. (1961). Pekeris er al. (1961) and Usami and Sato (1962a.b)]. Most of
the interest in this subject was aimed at understanding the generation of earthquakes.
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Although the earth is not a true sphere. but an ellipsoid. these works nevertheless provided
a reasonably accurate prediction between numerical results and experimental observations.
More recent studies on sphere vibrations have been completed regarding the orthogonality
and normalization of torsional modes (Hossetni-Hashemi and Anderson. 1988) and spheres
subjected to impulsive loading (Hosseini-Hashemi, 1986) and the evaluation of elastic
constants (Mochizuki, 1988).

The analysis of free vibration of anisotropic spheres is complicated because the resonant
conditions are highly dependent on the orientation of the material axes of the solid. In the
case of isotropic materials, the analysis is greatly simplified and exact mathematical sotutions
are possible. To date, however, exact mathematical solutions for anisotropic spheres and
other shapes do not exist.

The analysis of vibrating cylinders also has a rich history in the field of solid mechanics.
This problem was first studied by Pochhammer (1876) and independently by Chree (1886).
These solutions are exact for infinitely long isotropic rods that are stress free along their
radial faces. Tables of natural frequencies and mode shapes of infinitely long solid circular
cylinders have been compiled by Armenakas er al. (1969) using these theories. However,
the Pochhammer-Chree theory cannot be applied to finite rods because the condition of
stress-free ends cannot be imposed. Exact solutions for this case are ditficult to obtain, and
approximate methods must be used to study these geometries.

There have been numerous attempts made at obtaining approximate sojutions for the
free vibrations of finite isotropic rods. Bancroft (1941) was the first to numerically explore
the governing equations of Pochhammer. His resulting values for various parameters related
to longitudinal wave propagation agreed very well with experimental results obtained carlier
by McMahon (1964). Later works studying the free vibrations of cylinders included the so-
called three-mode theory (Mindlin and McNiven, 1960 ; McNiven and Perry, 1962), the
series solution by Hutchinson (1972), the finite difference solution by McMahon (1970)
and the finite clement solutions by Gladwel and Tahbildar (1972) and Gladwell and Vijay
(1975). Most of these methods gave frequencies that compared well with experimental
observations.

Several studies have also appeared that consider the vibrations of finite anisotropic
cylinders. Morse (1954) extended the Pochhammer-Chree solutions to the case of an
infinitely long cylinder composed of 4 material with hexagonal symmetry. Lusher and
Hardy (1988) used Morsce's approach to extend Hutchinson’s solution in obtaining a series
solution for a finite rod with hexagonal symmetry. Only the axisymmetric modes were
considered in this work, which also included experimental observations made on sapphire.
More recently, the Ritz method has been used to find estimates for the axisymmetric free
vibrations of finite anisotropic cylinders (Heyliger, 1991).

The present work uses the Ritz method to find the natural frequencies of free vibration
of anisotropic cylinders and spheres as formulated in cylindrical, spherical and Cartesian
coordinates. This approach is based on the work of Ecr Nisse (1987), Holland (1968).
Demarest (1969) and Ohno (1976) and the recent work of Mochizuki (1988), Hevliger er
al. (1989), Migliori ¢f al. (1990) and Visscher ¢r al. (1991). The present approach differs
from these approaches in the coordinate systems. constitutive relations, and form of
approximating functions that are used. This allows for the consideration of a wide variety
of new problems that for example consider spatial dependence of the elastic stiffnesses (c.g.
a layered shell) or solids where the principal material directions are not aligned with the
dircctions of a rectangular Cartesian coordinate system (¢.g. a filament-wound cylindrical
composite shell).

3. GOVERNING EQUATIONS

In this scction. the equations of motion and their corresponding weak forms are
derived. and the Ritz approximations to these equations for the orthotropic cylinder and
sphere are constructed in several different coordinate systems. The representative equations
are derived for the orthotropic cylinder and sphere in cylindrical and spherical coordinates,
respectively. and are also derived in Cartesian coordinates. Each of these different systems
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Fig. |. Coordinate systems : (a) cylindrical coordinates ; (b) spherical coordinates.

is represented in Fig, 1. The Ritz approximations are developed using basis functions that
match the coordinate system under consideration. As shown in the sequel, use of different
coordinate systems allows a more natural representation of a problem based on the nature
of the elastic stiffnesses and the geometry of the solid.

In the following discussion, the generic coordinate system x, is introduced, with the
appropriate directions depending on the specific coordinate system. The general constitutive
refation that will be considered here can be expressed in the form

r”ll\ —Cu Chy Cp 0 0 07 (&)
022 C, Cyy Cyy O 0 0 £12
J O3y | _ Ciy Cy Cri 0 0 0 £y
r = < d (l)
01] 0 0 0 C.;_‘ O 0 }'2]
012 LO 0 0 0 0 Co L?lb

Here o, represent the components of stress, C,, are the components of the elastic stiffness
tensor and ¢ and y are the normal and shear strain components, respectively. The rep-
resentative directions defined by the subscripts will be identified for each case in the sequel.
Clearly the derivation that follows can be casily modified for more complex constitutive
relations. Hamilton's principle provides the starting point for each of the subscquent
derivations. This can be written as

= —J‘ J {006, + 0,06, 40,06, + 0,06, +0506s+ 0,08, dV di
0 ¥
+§o‘f Jp(U:+ Vie WHdvde (2)
0 ¥

Here, V is the volume of the solid, i = Au/dt. t represents time. p is the density of the
material, ¢ is the variational operator, U, ¥ and W are the displacement components in the
three coordinate directions, and the conventional notation (¢,, = 0,, ¢,; = g4, etc.) has
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been used. For the problem of free vibration, there are no applied external loads and each
face of the solid is assumed to be stress free.

The orthotropic sphere : cvlindrical coordinates

For the orthotropic ¢ylinder. the displacement components are identified in the radial.
tangential and axial directions. Hence x, =r, x- = ¢ and x, = as shown in Fig. la
and U, = U, =U(r.0.2). Us=U, = F(r.0.2)and Uy = U. = W(r.0.2). Formulating the
equations of motion in this form is convenient not only for cylindrical geometries but also
for materials such as wood and filament-wound composites, where the principal material
directions are most naturally defined in the radial. circumferential and axial directions. The
stress—strain relations in cvlindrical coordinates are given as (Fung. 1963)
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To aid in the calculations, the displacement variables are nondimensionalized by defining
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where L, and L, represent the radius and half-height of the cylinder, respectively. This
procedure is used only for computational efticiency by allowing all cylinders to be mapped
into a parent cylinder to minimize computations. For simplicity, it is assumed that this
process has been completed, and the asterisks are dropped.

Substitution of the strain-displacement and stress-strain relations into Hamilton's
principle, using the assumption of periodic motion, and performing the appropriate oper-
ations yiclds the variational form of the governing equations as
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This equation forms the basis for numerical approximations using the Ritz method. Inte-
grating by parts and separating the coefficients of the variations in U, ¥ and W yields the
equations of motion. These are given in Appendix A.
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The orthotropic sphere : spherical coordinates

In spherical coordinates. the displacement components are defined in the radial
(x, = r), azimuthal (x, = ¢). and circumferential (x; = 8) directions as shown in Fig. 1b
as U, =U,=U(r.¢.0). Us=U, = V(r.¢.6). Uy = U, = W(r.¢.0). The stress-strain
relations can be written as
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The corresponding weak form is given by
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Although not shown, the radial displacement component can be nondimensionalized so
that all calculations are performed on the unit sphere. The corresponding equations of
motion are given in Appendix A.

The orthotropic solid : Cartesian coordinates

The problem of the vibrating solid can also be formulated in terms of rectangular
Cartesian coordinates. This approach has the advantage that the modes of vibration can
be separated according to certain geometric and material symmetries, which drastically
reduce the size of the eigenvalue problem that results from these formulations (Demarest,
1969). In this case the displacement components are expressed in terms of the coordinates
(x1 = x.x, = y,x; = ) with the corresponding displacement components U, = Ul(x, v, 2),
U= V(x,p,z) and Uy = W(x, y,z). The strain-displacement relations are given as
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Substitution of these equations and the stress-strain relations into eqn (2) gives the weak
form as
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Ritz approximations

Rather than directly solving the governing differential equations, the Ritz method seeks
approximate solutions to the weak forms as given in eqns (6), (8) and (10). This is
accomplished by approximating the displacement components U, V and W using finite
lincar combinations of the form [see Reddy (1984)] :

Ulxyoxx) = Pl x )+ Z a, i xa ), U = d (X1, Xy, ).

=

Vxpoxaon) =@l ooxy)+ Z b (X, X0 xy), O = iy, val Xy,

=1

Wlepxyx) =iy, v x )+ Y i (v xn ), W =¢r(x, xoxy). (1)

y- 1

Here ) cte. are known functions ol position, » represents the number of terms in the
approximation for the displacement components, and «,, b, and d, are constants that are
determined by requiring that each of the variational statements hold for arbitrary variations
of U, Vand W. This latter requirement is equivalent to the weak forms holding for arbitrary
variations of a, b and d.

The sclection of the approximating functions ¢ is somewhat arbitrary as long us
several requirements are met in order for the Ritz approximations to converge to the true
solution. First, the functions ¢, should satisfy the actual form of the specified essential
boundary conditions. For the problem of free vibration, the boundary conditions are all of
the natural type in that all faces of the solid are stress free. In the Ritz method. the natural
boundary conditions are contained in the variational statement of the problem. Hence there
1s no need to explicitly satisfy these conditions. For these reasons, the ¢, terms are set equal
to zero. The remaining functions in the summation must meet the requirement of continuity
as required by the variational statement, they must satisfy the homogeneous form of the
essential boundary conditions, and they must be lincarly independent.

A number of different functions can be sclected which meet these requirements. In this
work, a combination of power serics, Fourier serics and spherical harmonics are used to
approximate the displacements. The actual sclection of these functions depends on the class
of vibration and the geometry of the problem being solved. In cylindrical coordinates,
Fourier series are used in the circumferential direction, with power series used in the radial
and axial dircctions. In spherical coordinates, power series in the radial directions are
combincd with spherical harmonics. Formulation of the problem in Cartesian coordinates
leads to approximations for each displacement component in the form of power series in
the coordinate directions (Heyliger. 1991).

Substitution of the approximate displacements and their variations into the weak forms
and collecting terms allows for writing the final equation in matrix form as
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The nature of [K] and [M] is a function of the particular formulation used. Depending on
the problem. a combination of analytic and numerical integration techniques are used to
evaluate the individual elements of these matrices. Numerical integration is particularly
useful when the elastic stiffnesses vary as a function of position and the resulting integrals
cannot generally be evaluated in closed form. The explicit forms of the coeflicient matrices
for the different coordinate systems are given in Appendix A. By using any conventional
solution technique, this system of equations can be solved for the natural frequencies of the
cylinder.

4. NUMERICAL RESULTS

In this section, results are presented from the application of the Ritz method to
representative example problems corresponding to the formulations in the previous section.
These problems represent the isotropic and anisotropic cylinder and sphere as formulated
in the ditferent coordinate systems accounting for the possibility of material inhomogencity.
The primary quantitics of interest are the natural frequencies of free vibration. Although
calculating and presenting the mode shapes involves hittle additional effort, results of this
type are referred to but not shown in this paper.

An additional measure of accuracy of the present technique is how well the condition
of traction-free surfaces is satisficd. In the cases of the sotropic sphere, the hollow isotropic
cylinder, and the cross-ply shell, the stresses were integrated over all faces of the solid to
assess the tevel of satisfaction of traction free surfaces. The resulting values were without
exception infinitesimally small.

The solid isotropic sphere

The isotropic sphere is useful to examine, primarily because it is a problem for which
exact solutions are available. In this section, results from the vibrations of the isotropic
sphere as formulated in spherical coordinates are presented. Torsional and spheroidal
vibrations of both hollow and solid spheres are considered.

For torsional vibrations there is no change in the volume of the sphere. This implics
that the radial displacements are zero, the dilatation is zero, and the displacements are
directed at right angles to radial lines from the center of the sphere. One form of the assumed
displacements as represented by the approximating functions are those that coincide with
the eigenfunctions derived from the exact solution for the isotropic sphere (sce Appendix
B). The displacement components in this case have the form

U =U(r.0,¢)=0, (13)

Uy = Vir0.) = fikr) - P cos 0)™me 14

[ LAY - Jn Sin () n Cos - LoNmp ( )
. . :

Up = W(r.0.¢) = fo(r)  Pr(cos O)550. (15)

di

Because the spherical harmonics are selected to approximate the displacements, the behavior
in the ( and ¢ directions can be represented exactly and the only unknown functions are
those in the radial dircction. Hence the only terms that are truly approximate are those
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used to represent f.(r) and f,(r) in egns (14) and (13) and the problem is essentially one-
dimensional. In the radial direction, a power series in r is used to approximate these two
functions.

Because of the physics of torsional vibrations, the resulting frequencies do not depend
on the Poisson ratio. The nondimensional frequencies calculated using this approach are
given tn Table | as a function of the number of terms used in the power series. The results
are compared with the exact solution, and the agreement s very good. The accuracy lessens
somewhat with the higher modes. which is an expected property of the Ritz method.
However. because the lower modes are of most interest. the accuraey for these trequencies
is well within reasonable limits.

Vibrations that involve a change in shape of the sphere are referred to as spheroidal
vibrations. These involve both transverse and radial motion at all points of the sphere. and
correspondingly there is now a dependence of the frequencics on the Poisson ratio. For
spherotdal vibrations, the approximation functions are selected such that the displacement
components have a form similar to those of the analvuie solution. These can be expressed
as

U, = U 0.d) = f(r) P cos ) (16
, . ool ‘
Uy = Vr iy = Jry | Plcos Dm0y {17
d#
) , % ,
Uyo= W r 00y = f,r) . Prlcos Y00, (18}
' sin {} '

The resulting nondimensional frequencies are given in Table 2 for the case of v = 0.3. As
before, the values are given as a function of the order used for the power series in the radial
direction, with excellent accuracy being obtained for a relatively low number ol terms. The
results for the higher modes are somewhat more accurate than the higher frequencies for
torsional vibrations.

Table | Nondimensional frequencies tfor torsional modes of an isotropic sphere

() o= |

Terms of power series in radial direction

Muode K 4 s 6 7 Exact
! 0.0 4.0 [$5))] i X1] 0.0 None
2 6.687 5781 3774 3763 5.763 3.763
3 12.254 12.038 9 198 9.1%6 9.096 Y093
4 — 18.699 15,496 12.666 12,651 12,323

thym=2
Terms of power series in radial dircction
Muode 2 3 4 3 Exact
t 2,326 2519 2504 2,501 2.5
2 10.014 3.094 7404 7.155 7136
3 - 174101 13,688 11.2%0 10514
4 - - 26,673 20.524 16,953
{Cym o= 3

Order of terms of power series in radial direction
de 0 1 2 3 4 5 Exact

Mo 2
l 5.743 3955 3.905 3.869 31.865 3.863 3.863
2 13.380 9.363 9.120 8.470 8.468 8 444
3 -— — 23.283 14.893 13.775 12.023 11.881
4 — — — 35889 21.653 18.948 15173
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Table 2. Nondimensional frequencies for spheroidal modes of an isotropic sphere

n=0
Order of terms in power series
Mode 0 l 2 3 4 5 Exact
t 4.8990 47178 44414 4.4403 4.4400 4.4400 4.430
2 — 12.718 12,625 10.526 10.523 10.494 10.494
3 — — 21,929 21.849 16.269 16.265 16.073
4 — — — 33.108 33.036 22215 21.579

(byn=1

Order of terms in power series
Mode 0 l 2 3 4 5 6 Exact
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6.7081 35122 34826 34247 33246 34245 34245 3.424
— 79897 69877 68910 6.7747 67731  6.7712 6.771
— 15.615 9.1424 80658  7.7896 77518  7.7458 7.744
— — 26.851 13.3178  11.793 10872 10.746 10.695

L S Y I

©n=2

Order of terms in power scrics
Mode 0 [ 2 3 4 S 6 Exact
3.0795 29593 2.6414 2.6406 2.640 2.640 2.640 2.640
9.1388 54448 50952 48782 4.8667 48653  4.8653 4.865
— 10.437 10.328 8.8423 8.4012 8.3520 8.3304 8.329
— 20,182 11.286 11.257 9 8448 9.8356 9.7816 9.780
— . 18.822  17.230 (5.0428 12444 12,405 12.157

N e N -

Although not shown, the shapes for most of these modes were plotted and compared
with the exact mode shapes such as those presented by Hosseini-Hashemi and Anderson
(1988). The comparison plots are virtually indistinguishable.

The solid isotropic cvlinder : circumferential vibrations

The circumferential vibrations of the isotropic cylinder were constdered as formulated
in cylindrical coordinates. The primary focus for these geometries was the frequency for
the circumferential wave numbers 7 = | and n = 2. These cases were selected because
comparative finite element solutions for this class of vibration have been tabulated by
Gladwell and Vijay (1975). The case of n = 0 corresponds to axisymmetric vibration and
has already been considered using displacements of the type described in eqn (11) with
V' =0 (Heyliger, 1991). These results are not repeated here.

The natural frequencies for the solid isotropic cylinder are presented in terms of the
dimensionless frequency Q, defined as wa/c, where ¢ = /(G/p), G represents the shear
modulus, a is the mean radius, and p is the material density. The Poisson ratio is taken as
0.3 for the results in this section. Tables 3 and 4 show the convergence of the frequency
parameter for the first eight circumferential modes as a function of the order of the
approximation in the radial and axial directions. The geometry of the cylinders is expressed
in terms of the shape parameter L, defined as the ratio between the cylinder length 2L_ and
the mean radius a. Table 3 is representative of a short disc, with L = 2. Table 4 shows the
converged frequency parameters for a range of values of the shape parameter L. The results
agree quite well with the finite element results of Gladwell and Vijay (1975). In all cases,
the present results are lower than those computed using finite elements. As the Ritz method
converges to the exact solution from above, the present results can be expected to be more
accurate than the finite clement results.

The solid isotropic cylinder : general vibrations

An application of the solution to the equations of motion for a solid isotropic cylinder
in both cylindrical and Cartesian coordinates is considered next. Specifically, the complete
vibrations of a solid isotropic cylinder are examined in which all classes of vibrations
are considered. This requires keeping all terms in the expansions for each displacement
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Table 3. Convergence of trequency parameter * tor circumferential vibrations of a solid isotropic cylinder

{a) Circumferential wave number = |

Order of terms

Mode | 2 3 4 3 6 7 FEM
[ 14170 13872 1.3326 1.3524 1.3523 1.3523 1.3523 1.357%
2 19763 1.6703 15522 ] 5446 1.5440 1.5440 [.5440 1.5570
3 2.2613 20948 20327 20277 2.0264 2.0264 2.0264 20330
4 2.7363 25009 23256 2.2991 2,297 22973 22973 23084
5 39844 2.7855 2.3450 2.3065 2.2997 2.2973 22973 23396
6 42478 28379 25230 24203 24191 24181 2418t 24686
7 5.2601 37473 33123 32168 31957 31935 31932 32751
N 6.0621 39872 34681 32319 3.2251 32195 32194 32794

(b) Circumferential wave number = 2
Orders of terms

Mode { 2 3 4 5 6 7 8 FEM

I 0.9494 0.8231 0.7968 (1.7957 0.7957 0.7956 0.7956 0.7956 0.8016

2 1.3941 11738 L1731 1.1725 {1725 11725 1.1725 L7225 1 IR43
3 25006 20726 2.0009 1.9837 19833 19832 1.9%32 19832 1.9934
4 2.6367 2.2029 2.0373 2.0220 2.0201 2.0200 2.0200 2.0200 20438
5 35581 27368 25105 24381 24343 2.4336 2.4336 14336 24620
6 3.8508 28550 2.6457 2.6241 2.6215 2.6213 26213 26213 26346
7 6.7965 35630 29433 28161 28124 28114 28114 28113 2 8948

8 6.9428 3.6760 3.2305 29488 29293 29252 29250 29240 3.0394
9 9.6965 4.5594 41379 37299 3.6053 36778 1.6766 16764 17761
10 10.TUR8 4.8603 4.2768 JR532 IR124 317979 37972 37970 39820

component rather than separating them according to the circumferential wave number.
As discussed carlier, grouping the approximating functions as formulated in Cartesian
coordinates 1n an appropriate fashion allows a reduction in size of the corresponding
cigenvalue problem, making the solution procedure much more efficient. In both cases,
terms in the approximation up to and including sixth order in eqn (11) are used for the
Cartesian formulation and fourth order using cylindrical coordinates.

A cylinder is considered with unit density and radius and a height of 2.0. The shear
modulus is also taken as unity and a Poisson ratio of 0.3 is specitied. The resulting natural

Table 4. Variation of frequency parameter <® for solid isotropic cylinder with varying height

() Circumferential wave number = |

Mode [ =2 l.=4 I.=6 L =8 L =10
Present FEM Present FEM Present FEM Present FEM Present FEM

{ 1.3523 L3578 0.996Y 0.9980 0.5880 0.5886 0.3868 0.3871 0.273t 02733
2 1.5440 13570 1.0755 1.0792 ). 8868 0.8891 0.7156 0.7169 0.5565  0.5573
3 20264 20330 1.4008 1.4072 1.2667 1.2711 1.0456 1.0484 0.8487  0.8506
4 22973 23054 1.5407 1.5453 1.29350 1.2988 1.0636 1.0670 0.9660  0.9690
5 22973 23396 1.7000 1.7137 14441 1.4513 1.3633 1.3682 1.1906 1.1934
6 24181 24686 1.9820 2.0023 1.4782 1.4844 1.3900 1.3961 1.2023 1.2061
7 31932 3.2751 2.05K83 2.0623 1.6705 1.6756 1.4135 1.4200 1.3941 1.4000
8 32194 32794 2.28%7 23185 1.5432 1.8567 1.5790 1.5875 1.4196 14268
(b) Circumicrential wave number = 2
Mode [=2 [ =4 l.=6 L =8 [ =10

Present FEM Present FEM Present FEM Present FEM Present FEM

| 0.7956 08016 0.9892 0.9963 1.0533 1.0611] 1.0589 1.0663 1.0603 1.0680
2 11725 L1843 1.1690 1.1802 10814 1.0885 1.0729 1.0806 o717 1.0792
3 19832 19934 1.2439 1.2513 11751 1.1871 11743 11862 1.1730 1.1839
4 20200 20438 1.5961 1.6092 1.3464 1.3569 1.2177 {2283 1.1766 11876
5 243360 24620 20190 20311 1.6805 1.6945 1.4290 14405 1.2892 1.2999
6 26213 26346 20349 2.0562 1.7033 1.7146 1.5887 1.5999 1.4603 1.4729
7 28113 28948 22286 22585 2.0364 2.0584 1.7560 1.7689 1.6176 1.6270
8 29249 30394 2.3520 2.3841 20197 2.0584 1.8011 1.8166 1.6439 1.6587

9 36764 3.7761 5675 2.5845 2.1808 2.2082 2.0397 2.0564 1.8237 1.8359
10 37970 39820 2.69R7 27742 2.3307 2.3557 2.0466 20677 1.8499 [.8682
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Table 5. Frequencies of solid isotropic cylinder as
calculated in cylindrical and Cartesian coordinates

Mode Cylindrical Cartesian Group

l 0.2500 0.2500 EV
2 03149 0.3149 EV
3 0.3149 0.3149 EZ
4 0.3173 0.3175 EY
5 0.3173 0.3175 EX
6 0.3424 0.3424 OX
7 0.3424 0.3424 (0) 4
8 0.3702 0.3702 oD
9 0.3721 0.3721 oD
10 0.3721 0.3721 (074
1 0.3959 0.3960 (072
2 0.3959 0.3960 oD
13 0.4459 0.4463 EY
4 0.4459 0.4463 EX
15 0.4571 0.4579 EZ
16 0.4882 0.4883 oD
17 0.4904 0.4906 OX
I8 0.4904 0.4906 oY
i9 0.5000 0.5006 (874

frequencies are given in Table 5. There is excellent agreement between the two formulations.
Each approach yields the six zero eigenvalues corresponding to the rigid body modes, which
are not included in the table. Also shown in the results are the corresponding group of each
mode identified by the nomenclature of Ohno (1976) and others. Such a grouping infers
that the vibration is of a specific type such as torsional, breathing and bending modes. The
exact first nonzero trequency is equal to 0.25 (Landau ¢ al.. 1986) and the exact 19th
frequency is equal to 0.5, which provides some basis of comparison for the results.

The hollow isotropic sphere

It is a simple modification to evaluate the natural frequencies of hollow cylinders and
spheres using any of the formulations. By mapping the thickness of the solid into the region
of integration, a wide range of wall thicknesses can be represented. Table 6 shows the
dimensionless frequencies for both torsional and spheroidal vibrations for a sphere with a
wall thickness to radius ratio of 0.6, The results are compared with the analytic solution of
Hossieni-Hashemi (1986) using terms up to seventh order in the approximation as for-
mulated in spherical coordinates.

Table 6. Dimensionless frequencies for hollow isotropic
sphere

{a) Torsional vibrations

Mode
N Theory | 2 3 4
t Present  6.357  [LI41 16340 22,030
Analytic 6357 L1401 16171 21.296

Present 2475 7237 116 16.515
Analytic 2475 7.237  11.639 16.499
3 Present 3850  R3S8 (2409 17.221
Analytic 3850 8358  12.363 16.986

o

(b) Spheroidal vibrations (v = 0.29)

Mode
Theory { 2 3 4
Present 4057 10751 19793 29270
Analytic  4.070  10.781 19.855 29322

I Present 3756 7857 9.611 12.677
Analytic  3.756  7.857 9.611 12.678

Present 2165 4827  9.288 {4.089
Analytic 2,165  4.832 9.298 14.115

o2

e
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Table 7. Nondimensional frequencies of a hollow

1S0tropic

cvlinder

(a) Circumferentiul wave number = 0

Mode

O P

-4

o

L=2 L =10
Present FEM Present FEM
14272 14278 0.5030  0.5030
1.7163 1.7168 0.9792 0.9792
22973 2.2980 1.3692 1.3693
26904 26921 1.6103 1.6067
28228 28267 [.6447 1.6491
36533 3.6721 1.6704 1.6663
36977 3.7061 1.9128 1.8225
31776 41891 1.9936 19713
4.2394 4.2516 2.0200 2.0200

(b} Circumferential wave number = |

Mode

et 0D —

~ N s

[ =2 L =10
Present FEM Present FEM
1.5333 1.5343 0.2476 0.2476
1.6011 1.6011 0.5249 (.5252
2.1667 21671 1.8209 0.8202
2,323 MRIRKS 1.0146 1.0126
2.5430 25482 1.2246 1.2132
2 6808 2.6836 1.2247 1.2162
3.4698 34715 1.4927 1.4698
16193 36228 1.5595 1.5165

(¢) Crrcumferential wave number = 2

Mode

Kt —

o

[ 2 Io= 10
Present 'EM Present FioM
0.9229 1.9245 11200 11288
11629 11671 11278 1.1362
21067 21079 11708 1.1842
2.1507 21536 11905 1.2027
2.5391 2.5420 1.3028 13148
284356 28470 14839 14891
3.0380 3.0443 1.7158 1.6955
33142 3.3200 1.8293 1.8225
38100 38219 19873 19464
39078 3188 2.0020 19682

The hollow isotropic cvlinder

The frequencies for the circumlicrential vibrations of a hollow isotropic cylinder are
given in Table 7 for the shape parameters L = 1 and L = 5. Again, / represents the ratio
of fength to mean radius, where the mean radius is the average of the distance to the outer
and inner thicknesses. For this example, the thickness/mean radius ratio is fixed at 1.4, The
dimensionless frequency is taken as w* = wa/c, where ¢ = \/(G/p) is the shear wave velocity.

Very good agreement is obtained with the finite element results.

Comparisons were also made with the work of Soldatos and Hadjigeorgios (1990),
who used an tterative solution of the three-dimensional equations of elasticity to predict
the exact frequencies of vibration for isotropic circular cylindrical shells. Table 8 shows the
results for a shell with a thickness/mean radius ratio of 0.3, a length/mean radius ratio of

Table 8. Frequency parameter @® for isotropic cireular eylindrical shells

Present
1.33731
1.32335
1.52768
1.92325

N

|
Soldatos Present
1.33761 237760
1.32371 272152
1.52805 316100
1.92695 3.67049

Mode
2
Soldatos
2.37781
272196
316159
367122

Present

SALET73
5.90205

Soidatos
393343
4.42468
11234
5.90307
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1.0. a shear modulus of 1.0 and a Poisson ratio of 0.3. The values are given in terms of the
frequency parameter w* = 2L’ 2. The agreement is excellent.

The luvered isotropic sphere

The layered sphere is composed of dissimilar isotropic materials in the radial direction,
such as those encountered when modeling the strata of the earth. These geometries can be
analysed by dividing the regions of integration between the different layers and substituting
in the appropriate material properties. A two-laver sphere was considered with the interface
located at L,/ 2, where L, is the outer radius of the sphere. For simplicity, the elastic constants
of the mner core are fixed. with the Young modulus given as 2.5 and the Poisson ratio of
0.25. The Young modulus of the outer layer is then varied within a factor range of 0.1-
10.0. The range of values of the first four frequencies are shown in Fig. 2. and are plotted
versus the parameter f§. which represents the log of the ratio between the two moduli.

The inhomogencous sphere

The clement coefficient matrices can be eviluated numerically, and it is therefore a
simple procedure to determine the natural frequencies for solids with properties with any
spatial variation. This can be used to represent the change in elastic constants or material
density due to environmental causes such as temperature or manufacturing processes. For
purposcs of demonstration, a sphere with a simple linear variation in the Young modulus
is considered, described by the equation

E(r) = 1;}.(1 +a;), (19)

“r

The approximate values are computed using the formulation. Figure 3 shows the first
four dimenstonless nonzero frequencies as a function of the parameter 2.

The thick, orthotropic shell

Most studies ol the free vibrations of orthotropic, thick shells have been used on
approximate shell theories rather than solutions to the equations of elasticity. Such theories
frequently make o significant number of assumptions regarding the type ol deformation
that can occur in the shell, and can often require restrictions regarding the effects of
trunsverse normal stress, rotatory inertia, shear deformations and deformation of the
normals. The present approach offers a useful alternative in that all effects are strictly
enforced from an elasticity sense. Comparisons provide a uscful means of evaluating the
elfects of assumptions typically used in anisotropic shell theories.

10.0

8.0 4

0 8,04

4.0 1
2.0 1
Q.0 v r — v J
-1.0 =75 =-.50 =.25 0.0 .25 .50 .75 1.0

Fig. 2. Dimensionless frequencies for a lavered sphere.
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5.0 L

4.0 1

Q) 3.01

2.01

104"

0.0 - - d
-10 =75 =.50 -.25 0.0 .25 .50 75 1.0

v r r v —

a

Fig, 3 Dimensionless frequencies for an inhomogenceous sphere.

The tree vibrations of thick cylindrical shells are considered in this section for three
ditferent orthotropic materials: topaz. barytes and magnesium. The density and elastic
constants used for these materials are those taken from Bergman (1938), Burrett (1952)
and Boletand De Klerk (1962). These values are given in Table Y. The resulting frequencics
for the case of axisymmetric vibrations are given in Table 10, The trequency parameters
o* are defined as the natural frequency divided by the shear wave velocity ¢ These values
are tuken as ¢ = \:"(('W';)) for the topaz and barytes, and ¢ = | (¢44/p) for the magnesium.
The frequency parameters are plotted as a function of mode number and the parameter o.
which 1s the ratio of shell thickness /r to the wavelength £ The thickness/mean radius ratio
was fixed at 1.0 tor the geometries considered.

The frequency parameters are compired with the results of Mirsky (1964, 1965), who
used both an antsotropic clasticity solution and an orthotropic shell theory. The results for
the mugnesium were extracted from a graph, while the results for the topaz and barytes
were taken direetly from a table. In general, the results are excellent.

The solid wood cvlinder

The present method can also be applied to consider the vibrations of wood for purposes
of evaluating clustic constants or their variation as a function of age, usc, moisture content
or other parameters. The density and elastic constants of Red Beech at a moisture content
of 11% are given in Table 11 (Bodig and Goodman, 1973). The natural frequencies of a
cylindrical sample with radius 1.0 and varying height are shown in Table 12, where the
results are given in Hertz, The symbol (2) denotes a repeated root.

The orthotropic cross-ply shell

A situation similar to the dissimilar isotropic sphere is the cylinder consisting of layers
composed of two ditferent materials. The level of complexity can be increased by allowing
cach layer to be anisotropic. A two-layer, cross-ply cylindrical shell composed of graphite-

Table 9. Elastic stiffnesses ¢
of 10" gem

cxpressed i ounits

i

C, Topaz Barytes Magnesium
[ 2871 912 597
., EALY 300 597
Cis 3003 1076 623
Cha 1100 124 169
[ 1357 293 169
Cen 1330 281 171
Cis (284 471 255
i RO 275 212
Cay 273 00 212
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Table 10. Frequency parameter w* for thick, orthotropic cylindrical shells

(a) The Topaz shell : axisvmmetric vibrations

2703

] Mode
{ 2 3 4
Present Mirsky Present Mirsky Present Mirsky Present Mirsky
0 0.0000 0.00 1.6532 1.65 32712 327 49547 4.97
0.01 0.0879 0.088 1.6328 1.65 3.2731 3.27 4.9540 497
0.1 0.8693 0.87 1.6337 1.63 34449 34 4.8940 1.90
0.2 1.5040 [.50 [.8940 1.89 3.8678 387 4.7776 4.78
0.3 [.7548 1.75 26983 270 4.3965 4.40 4.7173 4.72
0.4 21250 212 3.4980 3.50 47144 4.72 5.0438 5.05
0.3 2.6004 1.60 41112 4.12 5.0587 5.06 5.6297 5.63
(b) The Barytes shell : axisymmetric vibrations
o Muode
l 2 3 4
Present Mirsky Present Mirsky Present Mirsky Present Mirsky
0 0.0000 0.00 1.5728 1.57 32712 27 5.8018 5.84
0.01 00139 0.114 1.5725 .58 3.2739 3.27 5.7998 5.84
0.1 11119 1.10 1.5777 1.57 3.5209 352 5.6672 5.70
0.2 1.5540 1.53 23443 2.36 4.1211 4,13 5.5104 5.53
0.3 1.8479 {83 34434 347 4.8901 491 5.4751 5.5
0.4 2.2909 2.27 44336 4.45 5.6602 5.69 5.7397 5.76
0.5 28158 277 5.0691 5.08 6.2983 6.34 6.6155 6.64
{¢) The Magnesium sheli: axisymmetric vibrations
B Maode
| 2 3 4 5 6
Present  [36]  Present [36]  Present  [36]  Present [36] Present [36] Present [36)
4 0.0000  0.00 00000 0.00 1.K9G6 {90 3.2908 329 37363 379 6.3092 6.32
0.05 0342 012 05474 057 LRRGY 18T M3ISKY 337 MT92 379 64771 618
010 006283 063 10775 108 LR863 189 35429 354 78RS 384 60368 6.00
005 09425 09S  1LSI03 1470 1999s 210 38105 38l 38530 389 SY225 58y
0.20 12566 1260 17202 1720 23797 238 30417 400 41333 441 5K441 0 580
025 15708  1.57  1.8530 185 28R3E 28K 40528 405 44931 447 57992 577
.30 [.8%49 LS 20093 200 34021 340 HIRd6 421 48786 488 57955 S
035 2990 220 22000 220 39044 3900 43352 438 S2KIS 526 S8d20 S84
040 24198 242 25133 252 43677 437 435027 458 56970 5.69 59357 600
045 26619 266 X274 284 46853 469 47643 476 60191 611 61604 621
0.50 29203 292 31416 316 48813 488 50751 507 64651 647 6.5510  6.55

Table 11 Elustic properties of Red Beech

y

pingem”

Modulus of clasticity and rigidity in 10° psi

14 (£, {(Eg)
0.75 1,987  0.325

(viw)  (vr)
0.45 0.51

(Er)  (Gea)
0.165 0.234
Poisson ratios
(vir) (vrr)
0.75 0.36

(Gi)
0.154

(Vo)
0.075

(GRT )
0.067

(vi)
0.044

Tuble 12, Nutural frequencies (in Hertz) of Red Beech cylinder as a function of

height
Mode L=2 L =4 L=6 L =8 L=10

I 8288 () 448 (D) 75.52 56.64 4531

2 17.22(2) 113.28 1103 () 93.64 (2} 69.31 (2}
3 127.92(2) 117.23(2) 17.23 () 113.29 90.63

4 15070 (2) {27.82 (%) 12643 (2) 362 11074 ()
5 15747 16637 (2) 136.69 (2) H7.23(2) {487 ()
6 180.95 (2) 173.55 () 143,17 (2) 128.21 (2) 117.23 (2)
7 200.40 (2) 173.89 (2) 150.73 (2) 128.30 (2) 12641 (2)
8 212.64 180.94 (2) 151.05 [37.48 (2) 128.02 (2)
9 218.03 191.68 162.99 (2) 14131 (2) 136.60 (2)
10 21886 199.33 (2) 178.30 (D) 172.21 137.77
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Table 13. Frequency parameter for a lavered composite shell

m n Lua=2 Lu=4

Present Kumaur Present Kumar
I 0 1.721 .61t 344 3
1 1.177 1133 2283 2478
1 2 0.842 147 1403 —

epoxy was considered with the properties £, = 30.0x 10" psi, E;=0.73x 10" pst.
via=0.25G,.=0375x10psiand G.,'E, = 0.416. The thickness 'mean radius ratio was
taken as 0.2. The shell in this example has a [0°90] stacking sequence, which implies that
the fibers in the outer laver run in the circumferential direction, while the fibers in the inner
layer run in the axial direction. The results are compared with the finite element results of
Kumar and Rao (1988), which were computed using a degenerated eight-noded iso-
parametric shell element with a shear coethicient of 5°6. The frequencies are tabulated in
terms of the frequency parameter »*, defined as

o= /” (20)
RN D -

where p 15 the material density, o s the nataral frequency, fis the eylinder length, and

Dy = ) Qtllz- 2n

Here, ¢ is the shell thickness and (4, is the reduced stiffness in the direction of the fibers
(Jones, 1975).

Results are shown in Table 13 as a function of m, the number of waves in the axial
direction, n, the number of waves in the circumfierential direction, and the ratio of the mean
radius « to the shell length /. The results were based on a two-dimensional stress state and
did not account for out-of-plane stifiness terms (i.e. €, = C., = C,. = 0). Fairly good
agreement is found between the two approaches.

5. SUMMARY

In this paper, approximate solutions of the three-dimensional equations of motion are
developed for the frequencies of free vibrations of solid and hollow anisotropic cylinders
and spheres. Several formulations of the Ritz method were applied to take advantage of
the form of the constitutive relations and the geometry of the solid shape. Approximating
functions involving combinations of power scries, Fourier series and spherical harmonics
were applied to a number of sumple geometries of both isotropic and anisotropic consti-
tution. Although many terms can be and were evaluated in closed form, it was sometimes
advantageous to evaluate the coefficient matrices numerically to account for spatial vari-
ations in the elastic constants.

The present approach extends and generalizes carlier applications of this type of
solution and is particularly useful for solids in which the principal material directions do
not align with rectangular Cartesian coordinates. Numerous representative examples were
considered, with very good accuracy being obtained in those cases for which comparisons
were available.

Acknowledgemeni—This work was supported by the National Science Foundation under Grant Number MSS-
9010099.
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APPENDIX A: EQUATIONS OF MOTION AND COEFFICIENT MATRICES

Cylindrical coordinates
The equations of motion for the orthotropic cylinder are given by
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The submuatrices for the Ritz coeflicients corresponding to this formulation are written as
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M=M=y = j Y, rdrdfide, (A1)
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Spherical coordinates
The equations of motion for the orthotropic sphere are given by
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The clements of the coetlicient matrices are expressed as
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Rectungular Cartesian conrdingtes
The elements of the coefficient matrices are given by
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APPENDIX 83

APPROXIMATION FUNCTIONS FOR SPHERE

Table B1. Example ol approximation functions for i sphere

a} Torstonal modes
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